

We D 10

Geoelectric Models of Kamchatka Active Volcanic Regions According to the Near-surface Geoelectric

S.P. Bortnikova* (IPGG SB RAS), I.N. Yeltsov (IPGG SB RAS), A.N. Faguet (IPGG SB RAS) & D.I. Fadeev (IPGG SB RAS)

SUMMARY

Основной целью работы было определение структуры и путей миграции высокоминерализованных растворов в приповерхностном пространстве термальных полей Мутновского вулкана (Камчатка, Россия). Работа основана на результатах полевых исследований и геолого-геофизической интерпретации

Введение

Вулкан Мутновский — один из самых посещаемых вулканов Камчатки. Это обусловлено его доступностью — на машине можно подъехать буквально к подножию сопки. Тем не менее, его нельзя назвать хорошо изученным. Уже не первое десятилетие туда отправляются экспедиции вулканологов, геологов, геофизиков, петрографов. И лишь в последние несколько лет на Мутновском вулкане впервые были проведены геоэлектрические исследования.

Объект исследований

Постройка вулкана имеет максимальную высоту 2323 м. В периоды «затишья» активность вулкана реализуется через обширную сеть термопроявлений в активных кратерах и многочисленных термальных площадках (рис. 1). Самыми крупными проявлениями активности в том районе являются Донное и Северо-Мутновское термальные поля [6].

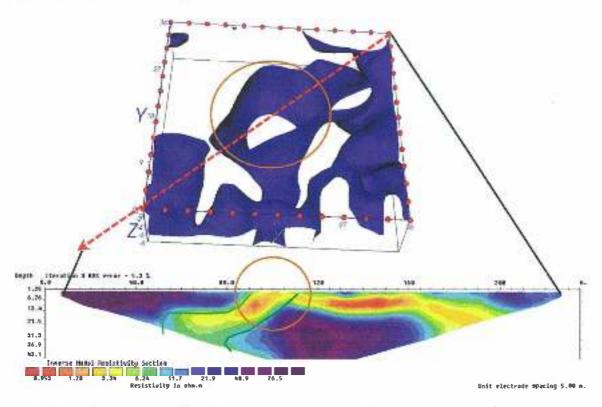
Рисунок 1 Слева-направо: полуостров Камчатка; фото Мутновского вулкана с вертолёта (автор Н.И.Селивёрстов), красным отмечено положение Донного термального поля в кратере.

Применяя методы частотного зондирования (ЧЗ) и электротомографии [1-5], было проведено зондирование Донного фумарольного поля, которое позволило прояснить вопросы, связанные со структурой и геометрией флюидопроводников.

Метод исследования

Стандартная методика измерений представляла собой набор продольных и поперечных разведочных линий, что вынуждало интерполировать данные на участках исследуемой площадки, между соседними профилями. Такой прием не вполне корректен, поскольку является псевдо-3D, или 2,5D. Нами была применена технология полноценных трёхмерных измерений, но не в классическом варианте, «змейкой», а в конфигурации «квадрат». В такой схеме полученный массив данных захватывает весь объём изучаемой среды, что является более корректным способом решения поставленной задачи. Были проведены измерения на квадратной площадке со стороной 36 м, с шагом между электродами 3м. В результате полевых работ получено более 7500 точек записи.

Работы выполнены методом электротомографии на постоянном токе прибором IRIS Syscal PRO Switch 48 (Франция). Инверсия данных выполнялась с помощью программных пакетов



RES2DINV и RES3DINV (Малайзия, GeotomoCorp.) и ERTLab(Multi-PhaseTechnologies, LLC(США), GeostudisAtiers.r.l. (Италия)). Частотное зондирование выполнялось прибором NEMFIS (КБ Электрометрии, Новосибирск [1]).

Результаты работ

Стоит отметить, что работы 2013 года были затруднены геологическими условиями: прошедшая зима характеризовалась крайне высоким уровнем выпавших осадков, поэтому исследуемая среда местами была сильно увлажнена, что в совокупности с исключительной минерализацией, присущей данному объекту, дало геоэлектрический разрез, обладающий аномально-высокой проводимостью. Значения УЭС в таких условиях составляли от 1 до 20 Ом*м, и некоторые комбинации источников-приёмников давали «бесконечный ток», т.е. величины, находящиеся за пределами возможностей измерительного блока применяемой аппаратуры. В этой связи около 60% полученных точек пришлось считать некорректными. К счастью, эти точки рассредоточены во всём массиве данных. Это позволило восстановить трёхмерную картину строения среды во всём измеряемом объёме, пусть и с меньшей достоверностью.

В результате инверсии полевых данных была построена трёхмерная модель распределения УЭС среды. На рис. 2 представлена изоповерхность значения УЭС 15 Ом*м, которая максимально близко отражает границы подводящих каналов центрального котла и соответствует данным 2010 года. Там же приведено сопоставление двумерной и трёхмерной моделей 2010 и 2013 годов, демонстрирующее корреляцию в положении границ. Стоит отметить, что соответствие не стопроцентное, это связано с ежегодными изменениями структуры термального поля.

Рисунок 2 2D (снизу) и 3D (сверху, изоома 15 Oм*м) электротомография на Донном фумарольном поле. На трёхмерной модели: ось Z — глубина, оси X,Y — величина расстановки, метры (36х36 метров, пятиметровые электроразведочные косы разложены с шагом 3 метра). Пунктирной линией отмечена дислокация профиля двумерной съёмки.

Частотное зондирование, также проведённое летом 2013 года на термальной площадке Донного поля, подтвердило положение и очертания центрального котла, что немаловажно. На профилях 0-4 (рис. 3) отчётливо просматриваются очертания большого котла.

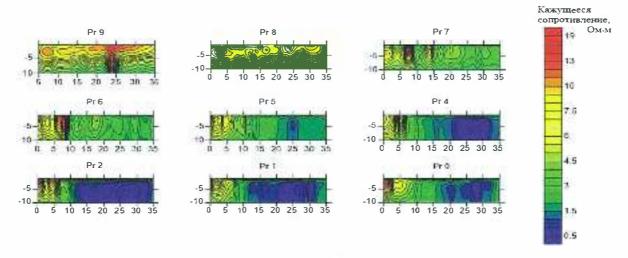


Рисунок 3 Профили кажущегося УЭС по данным ЧЗ на Донном поле.

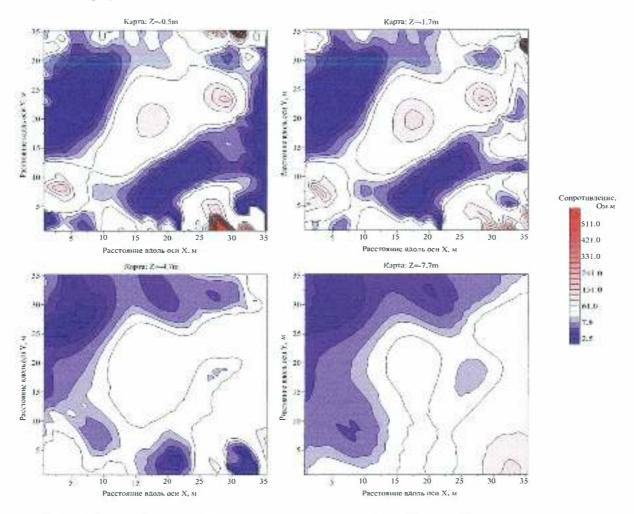


Рисунок 4 Карты распределения УЭС по глубине по данным 3D томографии.

Нельзя говорить о его размерах, так как на профилях частотного зондирования отмечена псевдо-глубина. Карты частотного зондирования, приведённые ниже (рис. 4) выделяют большой котёл низким сопротивлением. Исследования ЧЗ предыдущих лет подтверждают данные 2013 года.

Выводы

По результатам работ получены уникальные данные, полностью трёхмерного распределения УЭС. Начата отработка методики измерения значений УЭС в трехмерном пространстве с использованием оригинальной схемы расположения электроразведочных линий. Установлены аппаратурные, методические и технические недостатки, над способом решения которых в данный момент ведется активная работа. Одним из важнейших результатов исследований является подтверждение ранее полученных данных, и их корреляция с результатами новых работ.

Благодарности

Коллектив авторов выражает благодарность Камчатскому институту вулканологии и сейсмологии (ИВиС ДВО РАН) за оказанную помощь и поддержку в выполнении полевых работ, а также геологам М.П. Горе и А.Я. Шевко (ИНГГ СО РАН) за достойную работу в отряде геофизиков и неоценимую помощь в проведении электроразведки на вулкане.

Список литературы

- 1. Балков, Е.В., Манштейн, А.К. [2001] Трехкатушечный индукционный зонд в частотном зондировании. *Геофизический вестник*, **2001**, №12, 17-20.
- 2. Бортникова, С.Б., Гавриленко, Г.М., Бессонова, Е.П., Лапухов, А.С. [2009] Гидрогеохимия термальных источников вулкана Мутновский (Южная Камчатка). *Вулканология и Сейсмология*, 2009, №6, 26-43.
- 3. Бортникова, С.Б., Шарапов, В.Н., Бессонова, Е.П. [2007] Гидрогеохимический состав источников фумарольного поля донного Мутновского вулкана (Южная Камчатка) и проблемы их связи с надкритическими магматическими флюидами. Докл. РАН, 413(4), 530-534.
- 4. Бортникова, С.П., Ельцов, И.Н., Панин, Г.Л., Нестерова, Г.В., Ковбасов, К.В. [2011] Электропроводность вулканических образований по результатам электротомографии и петрофизическим оценкам. Тезисы докладов НК Геодинамические процессы и природные катастрофы в Дальневосточном регионе, Южно-Сахалинск, 2011, с. 9-10.
- 5. Панин, Г.Л., Котенко, Т.А., Балков, Е.В. [2011] Современные геоэлектрические методы в задачах определения структуры транспорта вещества термальных полей вулканогенных объектов Северных и Южных Курил. Тезисы докладов НК Геодинамические процессы и природные катастрофы в Дальневосточном регионе, Южно-Сахалинск, 2011, с. 46-47.
- 6. Селянгин, О.Б. [1993] Новое о вулкане Мутновский: строение, развитие, прогноз. Вулканология и сейсмология, **1993**, № 1. 17-35.